Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat.
نویسندگان
چکیده
A short ischemic period induced by the transient occlusion of major brain arteries induces neuronal damage in selectively vulnerable regions of the hippocampus. Adenosine is considered to be one of the major neuroprotective substances produced in the ischemic brain. It can be released from damaged cells, but it also could be generated extracellularly from released ATP via a surface-located enzyme chain. Using the rat model of global forebrain ischemia, we applied a short (10 min) transient interruption of blood flow and studied the distribution of ectonucleotidase activities in the hippocampus. Northern hybridization of mRNA isolated from hippocampi of sham-operated and ischemic animals revealed an upregulation of ectoapyrase (capable of hydrolyzing nucleoside 5'-tri- and diphosphates) and ecto-5'-nucleotidase (capable of hydrolyzing nucleoside 5'-monophosphates). A histochemical analysis that used ATP, UTP, ADP, or AMP as substrates revealed a strong and selective increase in enzyme activity in the injured areas of the hippocampus. Enhanced staining could be observed first at 2 d. Staining increased within the next days and persisted at 28 d after ischemia. The spatiotemporal development of catalytic activities was identical for all substrates. It was most pronounced in the CA1 subfield and also could be detected in the dentate hilus and to a marginal extent in CA3. The histochemical staining corresponded closely to the development of markers for reactive glia, in particular of microglia. The upregulation of ectonucleotidase activities implies increased nucleotide release from the damaged tissue and could play a role in the postischemic control of nucleotide-mediated cellular responses.
منابع مشابه
Inhibition of Angiotensin-Converting Enzyme Reduces Cerebral Infarction Size in Experimental-Induced Focal Cerebral Ischemia in the Rat
Background: The role of Renin Angiotensin System (RAS) in ischemic/reperfusion (I/R) injuries is not fully elucidated. Furthermore, it is not clear whether inhibition of RAS by Angiotensin-Converting Enzyme (ACE) inhibitors has beneficial effects in terms of protecting the brain from I/R injuries. In this study enalapril is used as an ACE inhibitor to evaluate the role of RAS in I/R injuries in...
متن کاملSulfur dioxide reduces hippocampal cells death and improves learning and memory deficits in rat model of transient global ischemia/reperfusion
Objective(s): According to recent the findings, sulfur dioxide (SO2) is produced by the cardiovascular system, influencing some major biological processes. Based on previous research, SO2 exhibits antioxidant effects and inhibits apoptosis following cardiac ischemia/reperfusion. Therefore, the objective of the current study was to examine the neuroprotective impact of SO2 following global cereb...
متن کاملProtective Effects of Enriched Environment Against Transient Cerebral Ischemia-Induced Impairment of Passive Avoidance Memory and Long-Term Potentiation in Rats
Introduction: Enriched Environment (EE), a complex novel environment, has been demonstrated to improve synaptic plasticity in both injured and intact animals. The present study investigated the capacity of an early environmental intervention to normalize the impairment of passive avoidance memory and Long-Term Potentiation (LTP) induced by transient bilateral common carotid artery occlusion (2-...
متن کاملNeuroprotective Effect of Paroxetine on Memory Deficit Induced by Cerebral Ischemia after Transient Bilateral Occlusion of Common Carotid Arteries in Rat
Aims:Memory deficit is the most visible symptom of cerebral ischemia. The hippocampus is sensitive against cerebral ischemia. Oxidative stress and inflammation are involved in the pathological process after cerebral ischemic injury. Paroxetine has anti-oxidative and anti-inflammatory effects. In this study the effect of paroxetine on memory deficit after cerebral ischemia was investigated. Meth...
متن کاملProbucol Attenuates Oxidative Stress, Energy Starvation, and Nitric Acid Production Following Transient Forebrain Ischemia in the Rat Hippocampus
Oxidative stress and energy depletion are believed to participate in hippocampal neuronal damage after forebrain ischemia. This study has been initiated to investigate the potential neuroprotective effects of probucol, a lipid-lowering drug with strong antioxidant properties, against transient forebrain ischemia-induced neuronal damage and biochemical abnormalities in rat hippocampal CA1 region...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 13 شماره
صفحات -
تاریخ انتشار 1998